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Abstract
Parkinson’s disease (PD) is the most universal chronic degenerative neurological dyskinesia and an important threat to
elderly health. At present, the researches of PD are mainly based on single-modal data analysis, while the fusion research
of multi-modal data may provide more meaningful information in the aspect of comprehending the pathogenesis of PD.
In this paper, 104 samples having resting functional magnetic resonance imaging (rfMRI) and gene data are from
Parkinson’s Progression Markers Initiative (PPMI) and Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
to predict pathological brain areas and risk genes related to PD. In the experiment, Pearson correlation analysis is
adopted to conduct fusion analysis from the data of genes and brain areas as multi-modal sample characteristics, and
the clustering evolution random forest (CERF) method is applied to detect the discriminative genes and brain areas. The
experimental results indicate that compared with several existing advanced methods, the CERF method can further
improve the diagnosis of PD and healthy control, and can achieve a significant effect. More importantly, we find that
there are some interesting associations between brain areas and genes in PD patients. Based on these associations, we
notice that PD-related brain areas include angular gyrus, thalamus, posterior cingulate gyrus and paracentral lobule, and
risk genes mainly include C6orf10, HLA-DPB1 and HLA-DOA. These discoveries have a significant contribution to the
early prevention and clinical treatments of PD.
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Introduction

Parkinson’s disease (PD), also called as tremor paralysis, is a
neurodegenerative disease commonly appeared in the elderly
(Tysnes and Storstein 2017). According to statistics, PD is the
most universal degenerative neurological disease next to
Alzheimer’s disease (De Virgilio et al. 2016). There are 5.7
million PD patients in the world, more than half of them are
accompanied by cognitive disorders and other symptoms in
the process of onset (Goldman et al. 2019). In general, PD
patients have symptoms of bradykinesia, limb tremor, myoto-
nia and discriminative posture (Bologna et al. 2016;
Thenganatt and Jankovic 2016). Moreover, PD starts occultly
and progresses slowly, which will cause irreversible damage
to the brain. At present, the popular medical methods for PD
are employing brain imaging technology and gene detection
technology to detect brain disease areas and predict the risk of
disease in advance (Rittman et al. 2016).

Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)- database
(adni.loni.usc.edu) and the Parkinson’s Progression Markers Initiative
(PPMI) database (www.ppmi-info.org/data). For up-to-date information
of PPMI on the study, visit www.ppmi-info.org.As such, the investigators
within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://
adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf

* Xia-an Bi
bixiaan@hnu.edu.cn

1 Hunan Provincial Key Laboratory of Intelligent Computing and
Language Information Processing, Hunan Normal University,
Changsha, People’s Republic of China

2 College of Information Science and Engineering, Hunan Normal
University, Changsha, People’s Republic of China

https://doi.org/10.1007/s11682-020-00392-6

/ Published online: 29 September 2020

Brain Imaging and Behavior (2021) 15:1986–1996

http://crossmark.crossref.org/dialog/?doi=10.1007/s11682-020-00392-6&domain=pdf
http://orcid.org/0000-0002-2715-3360
http://www.ppminfo.org/data
http://www.ppminfo.org/data
http://www.ppminfo.org/data
http://www.ppminfo.org/data
http://www.ppminfo.org/data
mailto:bixiaan@hnu.edu.cn


In recent years, the researches on PD from neuroimaging,
genetics and other fields have always been the focus of re-
searchers (Nalls et al. 2015; Santos-García et al. 2016).
Although some meaningful research results have been
achieved, the nosogenesis of PD does not been completely
comprehended. On the one hand, in neuroimaging studies,
Wen et al. (2016) have found that fear in PD patients is closely
related to dopaminergic density in their caudate and putamen
nuclei, and they also find that the functional connectivity
between limbic and prefrontal networks is reduced in PD
patients, while the neural activity in prefrontal area is
increased. For the purpose of studying the potential
pathological mechanisms of postural instability in PD
patients who fall frequently, Kaut et al. (2020) compare the
changes in functional connections between falls, non-fallers,
and healthy controls (HC), and find that functional connec-
tions between cerebellar structures in PD patients are en-
hanced. Furthermore, Martin et al. (2019) have detected that
during motor planning, the dorsolateral prefrontal cortex of
PD patients shows significant relative hyperactivity.

On the other hand, in genetic researches, Agliardi et al.
(2019) have studied the regulation of snap25 single nucle-
otides on gene expression at different levels, and ultimately
discovered that snap25 may have synergistic effect in the
pathogenesis of PD. Similarly, it has been found that the
adenosine A2A receptor gene is an important molecular
target for PD therapeutic compounds, further indicating
that the selective epigenetic mechanism targeting gene pro-
moters is a tool for developing new therapies (Falconi et al.
2019). By studying the entire exome sequencing data from
1156 PD subjects and 1679 control subjects, Robak et al.
(2017) have identified several promising new susceptible
loci that have enhanced the importance of lysosomal mech-
anisms in the pathogenesis of PD, and they have also
discovered that multiple gene mutations may work
together to reduce lysosomal function, thus enhancing the
susceptibility of PD. In addition, in the process of
exploring the risk loci of PD, Reynolds et al. (2019) have
found that the risk sites of PD do not exist in specific cell
types or single brain area, but in the whole cell process that
can be detected in multiple cell types. In summary, we
have noticed that most of the researches on PD are focus-
ing on the disease-causing brain areas or genes, rarely in-
volving the combination of imaging and genetic data, but
multi-modal data can make full use of multiple comple-
mentary information. If the correlation between gene and
brain area can be fully utilized, we can study the patholog-
ical mechanism of PD more comprehensively. Therefore,
adopting multi-modal data to PD study is the general trend.

However, in the face of limited available data and
high-dimensional characteristics, classic statistical analy-
sis methods such as logistic regression, factor analysis,
and discriminant analysis (Akgun 2012), it is often

difficult to make full use of existing data, especially in
multi-modal data fusion analysis. At this point, machine
learning methods, especially improved machine learning
methods, always show a wider application prospect in
such problems (Du et al. 2019; Huang et al. 2018; Su
et al. 2019). Therefore, applying the improved machine
learning method to the exploration of PD multi-modal
data may be more effective in exploring the pathogenesis
of PD.

In our study, we construct the correlations from genes and
brain areas, and integrate it as the sample characteristics of
multi-modal data firstly. Then, the clustering evolution ran-
dom forest (CERF) method is adopted to analyze the correla-
tions extracted from the data of genes and brain areas. By
picking samples and sample characteristics stochastically,
the random forest is established, and the clustering evolution
idea and threshold filtering is employed for detecting the path-
ogenic brain areas and genes in PD disorder. Based on the
resting functional magnetic resonance imaging (rfMRI) and
gene data of 104 subjects, the CERF method is applied. The
experimental results show that the CERF method can further
improve the diagnosis of PD and healthy control compared
with the several existing advanced methods. More meaning-
fully, in the experiment, we identify some pathogenic brain
areas and genes for the prevention and diagnosis of PD, which
are meaningful for further research of PD.

Materials and methods

Overview

In Fig. 1, we show the flow of the model we applied. The
model has three important parts: (1) the fusion analysis of
rfMRI and gene data, (2) the application of CERF method,
(3) the detection of pathological mechanism of PD. We fuse
rfMRI data and gene data at first. Then, based on CERFmeth-
od, the fusion characteristics are training to obtain the optimal
fusion characteristics. Finally, based on the analysis of opti-
mal fusion characteristics, we detect discriminative genes and
brain areas associated with PD disorders.

Participants

The PPMI database (http://www.ppmi-info.org/) and ADNI
database (http://adni.loni.usc.edu/) are large-scale public data-
bases, which collect a large number of positron emission com-
puted tomography data, MRI data and single nucleotide poly-
morphism (SNP) data of patients with PD and its related dis-
eases (Jones-Davis and Buckholtz 2015; Marek et al. 2018;
Torigian et al. 2016). The PD progress indicator program is a
landmark observational clinical study sponsored by the
Michael Jefferson foundation, which aim to comprehensively
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evaluate important research objects through advanced imag-
ing, biological samples, and clinical and behavioral assess-
ments to identify the biological indicators of PD progress.
This study collects 55 patients (18 females and 37 males,
mean age: 66.9 ± 4.5 years) with PD related diseases from
the PPMI database and 49 HC (25 females and 24 males,
mean age: 69.3 ± 5.3 years, 35 HC from the ADNI database
and 14 HC from the PPMI database) with age and gender-
matched. In addition, each sample is guaranteed to have
rfMRI data and gene data (Fleming 2017; Power et al.
2017). From a medical point of view, the physiology and
psychology of samples meet the common standards of normal
healthy people. These two databases have strict standards for
data collection and processing, ensuring the homology of the
data in structure. All HC are not interfered by other nervous
system diseases, and all subjects have signed a written con-
sent. What is more, the multi-modal data used in this article
has been approved and authorized by PPMI and ADNI, and
the data usage conforms to the standard.

In this study, chi-square test and two-sample t-test are
adopted to evaluate the gender and age differences between
the two groups, respectively. The test results show that there is
no notable difference between the gender and age of the
participants.

Multi-modal data acquisition

The rfMRI and gene data of all test samples are obtained from
PPMI database and ADNI database. The 3T SIEMENS MRI
scanner is applied to acquire the rfMRI data of samples. All
samples are kept eyes closed and awake during fMRI scan-
ning. The main parameters of the instrument are as follows:
pulse sequence is EP, TE = 25.0 ms, TR = 2400.0 ms, field
strength = 3 Tesla, time slice = 210, slice thickness =
3.2 mm, and turning angle = 80 °. The acquisition equipment
of SNP data is Illumina Infinium iSelect HD chip, and blood is
the raw material for all SNPs information collection of
samples.

Multi-modal data preprocessing

In order to ensure the quality of image data, rfMRI data need
to be preprocessed. In this experiment, DPARSF software is
adopted to preprocess the data. The processes include: (1) the
data format of the original image file is transformed from
DICOM to NIFTI for the next preprocessing, (2) the first 10
time points are deleted to reduce the negative effect of mag-
netic field on the image data, (3) the time difference between
each layer is corrected, (4) the head motion correction is used

Fig. 1 The illustration of our
model
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to specify the range of head swing, (5) the EPI template is
adopted to standardize the image to make up for the difference
of anatomical structure in data acquisition, (6) the standard-
ized image is Gaussian smoothed to guarantee image quality,
(7) the linear drift is removed and the pathological signals are
retained, (8) the filtering noise (0.1HZ-0.8HZ) is conducted to
remove the noise in specific high-frequency band of data, (9)
the covariates are removed and signals that affecting subse-
quent experimental results are regressed.

Similarly, we need to preprocess the gene data for ensuring
the quality. PLINK software is adopted to preprocess SNP
data, the processes are as follows. Firstly, we set the thresholds
of “sample call rate”, “genotyping” and “minimum allele fre-
quency” to 95%, 99.9% and 4%, respectively. Next, the Hardy
Weinberg test threshold is set to 1e-4. Finally, we reserve
23,000 SNPs for subsequent experiments.

Multi-modal characteristic construction

At present, in the field of neuroimaging, the brain dominates
the activity processes in the body and regulates the balance
between the body and the surrounding environment. The
genes control many important physiological processes of life
activities, such as the division of cells, the synthesis of pro-
teins and so on. Therefore, based on the feasible fusion meth-
od in the correlation of brain area and gene, multi-modal data
can be better applied for its complementary information (Du
et al. 2018; Du et al. 2020; Hao et al. 2016), and can provide
more favorable information for PD exploration.

The first work of this study is to combine rfMRI data and
SNP data to construct multi-modal fusion characteristics. The
specific construction steps are as follows: Firstly, the rfMRI
data are divided into 90 brain areas by Anatomical Automatic
Labeling (AAL) template, corresponding to 90 time series.
Then, we use quality control to the SNP data. According to
the reference SNP number of SNPs, we group the SNPs on the
basis of the belonging genes. N gene groups with a number of
SNPs greater than the threshold t are retained. Then, the genes
are encoded with discrete values, and their bases (A, T, C and
G) are replaced by numbers (1, 2, 3 and 4) to form the digital
sequence. At last, we get n gene digital sequences and 90 brain
time sequences. We adopt Pearson correlation coefficient to
construct the fusion characteristic between gene and brain area
as the input characteristic of the model (Schober et al. 2018),
so we get N × 90 fusion characteristics of each sample.

The clustering evolution random forest method

Another work is that the CERFmethod, an improved machine
learningmethod, is applied in this study. The following are the
implementation steps.

First, the training set, verification set and test set are ran-
domly selected according to a certain proportion. After

determining the data division strategy, a randomly selected
training set is used as a training sample, and 64-dimensional
fusion characteristics are selected from the training sample to
construct a decision tree. Through the above method, we build
a single decision tree, and use the corresponding randomly
selected verification set to evaluate the classification perfor-
mance of the decision tree. If the accuracy is more than 50%, it
is retained. We repeat the above steps of building decision tree
to get multiple decision trees to build the initial random forest.

Next, clustering evolution is conducted to enhance stability
and classification accuracy of the model. In this study, dis-
agreement measure (DM) is used as the decision tree cluster-
ing similarity measure. The specific calculation method is as
follows. For two arbitrary decision trees Ta and Tb, Cab repre-
sents the samples number which can be classified correctly in
the training set Ta and Tb. Ca − b represents the samples num-
ber which can be classified correctly in the training set Ta but
incorrectly classified by Tb,Cb − a represents the samples num-
ber which are classified correctly in the training set Tb but
incorrectly classified by Ta. Wab represents the samples num-
ber which are incorrectly classified in the training set Ta and
Tb. Thus, the DM is constructed:

DMa;b ¼ Ca−b þ Cb−a

Cab þ Ca−b þ Cb−a þWab

The smaller theDMa, b is, the more likely they are to belong
to the same cluster. The decision tree with high similarity is
further clustered into a cluster by using the linkage hierarchi-
cal clustering algorithm, and each cluster only retains the de-
cision tree with the highest classification accuracy. The above
process is a clustering evolution, which is iterated many times
during the training of the model, so that the performance of the
model is optimized gradually.

In this study, the majority voting method is used to get the
final classification result of the CERF method. When the test
sample is input into the model, each decision tree in the model
will give a classification result. Next, wemake statistics on the
classification results, and then the category with the most
votes is regarded as the final category of the sample.

Optimal fusion characteristics analysis

After multiple clustering evolutions, each decision tree in the
model has a better ability of sample classification, so the fu-
sion characteristics that these decision trees select can clearly
distinguish the HC and the patient. If a fusion characteristic
appears repeatedly in multiple decision trees, it means that the
fusion characteristic may have a significant contribution to
classification. Therefore, we count the frequency of each fu-
sion characteristic in all reserved decision trees, and select n
high-frequency fusion characteristics as important fusion
characteristics. In order to find out the fusion characteristics
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with the strongest ability of classification, the selected n high-
frequency characteristics are divided into several characteris-
tic subsets, and then these subsets classification performance
is tested. The fusion characteristics of the subsets correspond-
ing to the peak classification accuracy are the optimal charac-
teristics. Finally, the frequency of brain areas and genes in the
optimal characteristic is counted. The higher the frequency of
the brain area and the gene is, it shows that the brain areas and
genes are more discriminative to patients and HC, so they can
be used as the related factors of the disease.

Results

Construction results of fusion characteristics

The brain is divided into 90 brain areas via AAL tem-
plate. 23,000 SNPs are grouped based on their corresponding
genes, and 45 genes with more than 40 SNPs are preserved.
Finally, Pearson correlation coefficients of 45 genes and 90
brain areas are calculated, and 45 × 90 = 4050 fusion charac-
teristics of each sample are acquired.

Construction of clustering evolution random forest
method

The optimization of the initial decision trees number and the
clustering evolutions number in random forest is very neces-
sary to improve the classification performance of the model.
The results are as follows.

We set the initial decision trees number and the clustering
evolutions number in random forests in the interval [300, 500]
and [1, 45], respectively. We constructed 500 decision trees to
form random forest. Then 45 clustering evolutions are con-
ducted for random forest. The random forest classification
accuracy is calculated after each evolution to find the optimal
number of clusters.

In order to get a reliable and stable CERF method, the
initial decision trees number is gradually reduced from 500
to 480, 460, 440,…, 300. According to the above method, we
obtain the optimal times of clustering evolutions correspond-
ing to the different number of initial decision trees, as shown
in Fig. 2. From the figure, we can get the optimal combination
of (400, 5). That is to say, the initial decision trees number is
set to 400, and final CERF method classification performance
is the optimal after five times clustering evolutions.

Extraction of discriminative brain areas and genes

Through the continuous clustering evolutions of random for-
est model, some redundant and invalid characteristics are
eliminated, and the classification performance of the model
is also constantly optimized, indicating that the remaining

characteristics have a great contribution to the classification
performance. Therefore, the frequency of the fusion charac-
teristic in each decision tree of the final CERF method is
calculated. The higher the frequency is, the greater the contri-
bution of characteristic to the classification performance is,
and the greater the difference between the normal and the
patient is. In this study, the first 400 high-frequency charac-
teristics are selected as important fusion characteristics.

According to the step of “Optimal fusion characteris-
tics analysis” in the section of “Materials and methods”,
the important fusion characteristics are divided into sev-
eral subsets. The set of important fusion characteristics is
superposed from 70 to 400 in 5 steps to obtain the optimal
fusion characteristics. Then the traditional random forest
is employed to evaluate the classification performance of
these subsets, which have different fusion characteristic
numbers. The result is shown in Fig. 3. When we select
fusion characteristics of the top 205 frequencies from the
important fusion characteristics into a subset, the classifi-
cation accuracy can reach 88.6%, which is the highest
accuracy. Thus, the top 205 fusion characteristics are se-
lected as the optimal fusion characteristics. In addition,
Fig. 4 shows the top 20 frequencies optimal fusion char-
acteristics, which have significant classification ability.

Finally, the frequencies of brain areas and genes are count-
ed based on optimal fusion characteristic, and the larger fre-
quencies represent the more discriminative brain areas and
genes. The locations and frequencies of PD-related discrimi-
native brain areas are shown in Fig. 5, and the frequency of
PD-related discriminative genes is displayed in Fig. 6. The
discriminative brain areas include angular gyrus (ANG.L),
thalamus (THA.L), posterior cingulate gyrus (PCG.L),
paracentral lobule (PCL.L), etc. The discriminative genes in-
clude C6orf10, HLA-DPB1, HLA-DOA, etc.

Fig. 2 The optimal number of clustering evolutions corresponding to the
number of different initial decision trees
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Comparison with existing advanced methods

In order to verify the rationality of the characteristic ex-
tracted by our method, we combine other fusion charac-
teristic construction and selection methods to extract the
optimal characteristics from different perspectives. The
fusion characteristic construction methods include corre-
lation distance and canonical correlation analysis, and the
fusion characteristic selection methods are random forest,
two-sample t-test and random support vector machine
cluster. We calculate the optimal characteristics number
corresponding to these modelsas the “Discoveries”, and
adopt the support vector machine (SVM) as the classifier
to obtain the respective accuracy. Then the optimal char-
acteristics extracted by different models are compared
with the optimal characteristics extracted by Pearson +
CERF model, and the results are shown in Table 1.

As can be seen from Table 1, the number of optimal fusion
characteristics extracted by the method we apply is the least
among all other existing methods, but the classification accu-
racy of the model based on the optimal characteristic collec-
tion is the highest. At the same time, we also find that our
method intersects other methods in extracting the optimal
characteristics. Based on the hypergeometric test, it is proved
that overlapping is not randomized. In addition, the more
numbers these optimal characteristics intersected with the op-
timal characteristics we extract, the higher the classification
accuracy is. The rationality and reliability of Pearson + CERF
model is proved.

The number of initial decision trees is set to 400, and the
cluster evolution time is set to 3, 4, 5, 6, 7 and 8, respectively.

We conduct 50 independent experiments to test the method
performance. We also compare the classification perfor-
mances of this method with two-sample t-test for single-
modal and multi-modal datasets. The results are described in
Fig. 7. It can be seen that as the evolution time increases, the
classification effect of the CERF method is improved signifi-
cantly. When peak performance is reached, if the clustering
evolution continued, the method classification performance
may decrease. Therefore, the clustering evolutions number is
5 and the initial decision trees number is 400, which is the
optimal equilibrium between resource and performance.
Finally, compared with the two-sample t-test, the CERFmeth-
od has obvious advantages, and the classification accuracy of
multi-modal data is higher than that of single-modal data.
Therefore, it can be concluded that the Pearson + CERFmodel
has significant classification performance in PD.

Discussion

In our study, we applied the CERF method, which can recog-
nize some highly discriminative brain areas and genes by clas-
sifying PD patients and HC. Among them, the ANG.L and
THA.L had higher frequency in the classification of PD, indi-
cating that these two brain areas played key roles in the clas-
sification of PD. The ANG.L had no visual impairment after
being injured, but people who were literate became unable to
read, which was clinically called dyslexia (Manes et al. 2018).
It had been reported that in PD patients, the structural and
functional changes of brain area included ANG.L. This result
suggested that the cognitive decline of PD was closely related

Fig. 3 The classification accuracy
of different numbers of important
characteristics

1991Brain Imaging and Behavior  (2021) 15:1986–1996



to the decline of angular structure and function, indicating the
specific areas of brain atrophied. At the same time, the study
found that cognitive dysfunction in patients with PD was
strongly correlated with an increase in pain processing dys-
function. Pain processing dysfunction was an important aspect
of the somatosensory network, and the ANG.L was one of the
central areas. In addition, the left corner gyrus was particularly
related to speech processing (Mihaescu et al. 2019). The
THA.L was the successor of sensory conduction. It was re-
ported that THA.L could also be used to predict the motor
response of PD for deep brain stimulation (DBS) (Younce
et al. 2019). Owens-Walton et al. (2019) studied the potential
differences in thalamic size and shape of Parkinson’s disease,
as well as the relationship between morphological and func-
tional connections and clinical variables. The results showed
that the functional connectivity between some brain areas and

THA.L increased. To sum up, the discovery of ANG.L and
THA.L was meaningful for the diagnosis and treatment of PD.

Moreover, we also found some brain areas related to the
development of PD, such as PCG.L and PCL.L. It was report-
ed that the cingulate gyrus was related to emotional processing
and cognitive functions, and the cingulate gyrus monitors sen-
sations and stereotactic positioning and memory (Tatura et al.
2016). Wilson et al. (2019) noticed that PCL.L played a cen-
tral role in integrating information and function separation in
brain areas, and it was particularly prone to atrophy in PD. The
studies had shown that PD patients would suffer from incon-
venience in lower limb movement (Drucker et al. 2019;
Khawaldeh et al. 2020). Schwartz et al. (2019) noticed that
the functional orientation of the PCL.L was mainly related to
the movement and sensation of the lower body. If injured, it
would cause movement and sensory dysfunction of both legs,

Fig. 4 The top 20 optimal fusion characteristics with the most significant classification effect
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urination and discriminative defecation function.
Furthermore, they also found that the degree of manic depres-
sion was relate to the PCL.L in PD patients.

We also found some discriminative genes related to
PD, such as C6orf10, HLA-DPB1 and HLA-DOA. Ciani
et al. (2019) showed in the article that in the recent
genome-wide association studies, C6orf10 was deter-
mined to greatly affect the pathological mechanism of
PD disease. Furthermore, Ghatak et al. (2018) revealed
new aspects of the disease mechanism, including non-
cellular autonomous events and the spread of pathogenic
proteins in the brain, and found that the genetic risk
variant gene for PD contains C6orf10. Based on the
deoxyribonucleic acid molecular epigenetic clock,

Fig. 5 The locations and frequencies of PD-related discriminative brain areas

Fig. 6 The frequency information of PD-related discriminative genes

Table 1 Comparison of our method with other existing advanced
methods

Methods Discoveries Accuracy Intersection

Pearson + CERF 205 88.1% –

Pearson + RF 670 78.5% 133 (p = 2.54358e-67)

Pearson + RSVMC 260 61.9% 81 (p = 2.528332e-10)

Pearson + t-test 499 71.4% 118 (p = 8.089311e-37)

CCA + t-test 412 78.5% 102 (p = 1.059997e-12)

CD+ t-test 447 73.8% 137 (p = 6.639003e-35)

RF, random forest; RSVMC, random SVM cluster; t-test, two-sample t-
test; CD, correlation distance. The p value was gained by the
hypergeometric test
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Chouliaras et al. (2018) applied the apparent genetic age
in blood to show the correlation with PD, including HLA-
DPB1 in the differential methylation loci of peripheral
blood monocytes related to montreal cognitive assess-
ment. In the study of apoptosis and immune activation
in response to infection, it was found that the expression
of HLA-DOA and HLA-DPB1 genes were decreased in
PD patients (Wu et al. 2017).

Some limitations should be declared in this study. First,
some atypical pathogenic factors which are lack of relevant
research are found in this paper. We will collect more data in
the follow-up research work and design new algorithm to
conduct in-depth analysis of PD. Second, we adopted AAL
template to divide brain area, and other templates such as
Broadman template could be used for matching (Joshi et al.
2004). Finally, the multi-modal data in this study were brain
areas and genes, and other modal data, such as lncRNA, pro-
tein and miRNA (Chen et al. 2019, 2018; You et al. 2016),
could be adopted for fusion to improve the classification ac-
curacy, so as to deepen the discussion of PD pathological
mechanism.

Conclusion

In this study, PD is explored by fusion of imaging and
genetic data. The fusion characteristics are constructed
based on the correlation between genes and brain areas,
and further analyzed by the CERF method. The main
contributions are as follows: first, a fusion scheme of
rfMRI and SNP data is designed, which makes full use
of the advantages of multiple discriminant characteristic
fusion; second, the efficient multi-modal fusion data anal-
ysis method—CERF, is applied in the detection of PD,
which can effectively identify PD patients and extract

the most discriminant characteristics; third, this study
identifies some landmark brain areas and genes that are
vital for the prevention and diagnosis of PD. The work of
this paper can provide valuable guidance for the research
of PD and other similar brain diseases.
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